
The implicit function theorem

We will give a proof of the implicit function theorem based on induction on the number
of equations. Let F1 = F1(x1, . . . , xm), . . . , Fn = Fn(x1, . . . , xm) be C1 functions defined in a
common domain Ω ⊂ Rm, with n < m. We consider the system

F1(x1, . . . , xm) = 0
...

Fn(x1, . . . , xm) = 0

(1)

and a point x0 = (x01, . . . , x
0
m) ∈ Ω for which the set equations hold. The theorem asserts

that if
∂ (F1, . . . , Fn)

∂ (x1, . . . , xn)
(x0) 6= 0 (2)

then there exists a neighborhood U = V ×W of x0, with V a neighborhood of (x01, . . . , x
0
n)

and W a neighborhood of (x0n+1, . . . , x
0
m), such that every solution of (1) in U is of the form

x1 = f1(xn+1, . . . , xm)
...

xn = fn(xn+1, . . . , xm)

(3)

for C1 functions fk defined in W with x0k = fk(x0n+1, . . . , x
0
m). The chain rule allows then to

obtain the derivatives of the fk.

We prove first the case n = 1, and to simplify notation, we will assume that m = 2. Thus,
let F (x, y) be a C1 function defined in Ω, and let (x0, y0) ∈ Ω be such that F (x0, y0) = 0
and Fy(x0, y0) 6= 0. We may assume that Fy(x0, y0) > 0. We will choose neighborhood of the
form U = I × J , where I = (x0 − a, x0 + a), J = (y0 − b, y0 + b).

(i) F = 0 is a graph over x

For a, b small we can ensure that Fy ≥ c > 0 in U , so that y → F (x, y) is strictly
increasing for y ∈ J and x ∈ I fixed. Since F (x0, y0) = 0 then F (x0, y0 − b) < 0 and
F (x0, y0 + b) > 0. By continuity, and for a small enough, we may assume that

F < 0 in the lower edge of U , F > 0 in the upper edge of U .

Hence, for each fixed x ∈ I there exists a unique y = f(x) ∈ J such that

F (x, f(x)) = 0 .

The argument shows that these are the only solution of F = 0 in U .
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(ii) The function y = f(x) is C1

Let x ∈ I and for small h let k = f(x+ h)− f(x). The mean value theorem ensures the
existence of θ1, θ2 ∈ (0, 1) such that

F (x+ h, f(x)) = F (x+ h, f(x))− F (x, f(x)) = Fx(x+ θ1h, f(x))h ,

and on the other hand

F (x+ h, f(x)) = F (x+ h, f(x))− F (x+ h, f(x+ h)) = −Fy(x+ h, f(x) + θ2k)k ,

so that

k = − Fx(x+ θ1h, f(x))

Fy(x+ h, f(x) + θ2k)
h . (4)

The denominator Fy stays away from 0 in U , while the numerator Fx is continuous, therefore,
k → 0 as h→ 0. Thus, y = f(x) is continuous, so that for h→ 0

k

h
= − Fx(x+ θ1h, f(x))

Fy(x+ h, f(x) + θ2k)
→ −Fx(x, f(x))

Fy(x, f(x))
.

This proves that the function f is C1 (as well as giving for the derivative the same expression
that yields implicit differentiation).

(iii) The inductive step

We analyze the system (1) with the condition (2), and consider the last equation Fn = 0.
By (2), there exists i ∈ {1, . . . , n} for which (∂iFn)(x0) 6= 0. Without loss of generality, we
may assume that this holds for i = n. It follows from the case of one equation that in a
neighborhood U of x0 the solutions of Fn = 0 correspond to a C1 graph

xn = g(x1, . . . , xn−1, xn+1, . . . , xm) , (5)

with g defined in a neighborhood of the point ẋ0 given by x0 with the n-th component
removed. We insert this back in (1) to obtain a system of n− 1 equations in m− 1 variables:

G1 = F1(x1, . . . , xn−1, g, xn+1, . . . , xm) = 0
...

Gn−1 = Fn−1(x1, . . . , xn−1, g, xn+1, . . . , xm) = 0

.

We must show now that
∂ (G1, . . . , Gn−1)

∂ (x1, . . . , xn−1)
(ẋ0) 6= 0 .

For 1 ≤ i, k ≤ n− 1 we have

∂Gk

∂xi
=
∂Fk

∂xi
+
∂Fk

∂xn

∂g

∂xi
=
∂Fk

∂xi
− αi

∂Fk

∂xn
,
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where

αi =
∂iFn

∂nFn

.

Written in columns

Ci =

 ∂iG1
...

∂iGn−1

 =

 ∂iF1
...

∂iFn−1

− αi

 ∂nF1
...

∂nFn−1

 = Ai − αiAn .

Therefore

det(C1, . . . , Cn−1) = det(A1, . . . , An−1)−
n−1∑
i=1

αi det(A1, . . . , Ai−1, An, Ai+1, . . . , An−1) .

The alternating property of the determinant gives

det(A1, . . . , Ai−1, An, Ai+1, . . . , An−1) = (−1)n−1−idet(A1, . . . , Ai−1, Ai+1, . . . , An−1, An) ,

and using the expression for αi we see that

det(C1, . . . , Cn−1) = (−1)n(∂nFn)−1
n∑

i=1

(−1)i(∂iFn)det(A1, . . . , Ai−1, Ai+1, . . . , An−1, An) .

The last sum corresponds to the determinant in (2) as calculated from the n-th row, and
thus, det(C1, . . . , Cn−1) 6= 0. The induction hypothesis yields C1 functions fk defined in some
neighborhood W of (x0n+1, . . . , x

0
m) such that

x1 = f1(xn+1, . . . , xm)
...

xn−1 = fn−1(xn+1, . . . , xm)

(3)

represents the solutions of the system G1 = · · · = Gn−1 = 0 in a neighborhood V ′ ×W of
ẋ0. This inserted back into (5) completes the proof.
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