The implicit function theorem

We will give a proof of the implicit function theorem based on induction on the number
of equations. Let Fy = Fi(x1,...,Zm), ..., Fn = Fp(xq, ..., 2,) be C! functions defined in a
common domain €2 C R™, with n < m. We consider the system

F1<C(31,...,[Em) = 0

: (1)
Fn([L'l, c. ,il?m) =0

and a point xg = (29,...,2%) € Q for which the set equations hold. The theorem asserts
that if o(F F)
1y---54n
cooon/ 0 2
For, ) 07 2)
then there exists a neighborhood U =V x W of xg, with V a neighborhood of (2%, ..., 29)
and W a neighborhood of (29, ..., 2Y,), such that every solution of (1) in U is of the form
ry = f1($n+17 e ,l’m)
(3)
Ty = fol@Tpi1,o o Tm)
for C' functions fj defined in W with 29 = fi(22,,,...,2%). The chain rule allows then to

obtain the derivatives of the fj.

We prove first the case n = 1, and to simplify notation, we will assume that m = 2. Thus,
let F(z,y) be a C! function defined in €, and let (x¢,%9) € 2 be such that F(zg,y0) = 0
and Fy(zo,y0) # 0. We may assume that Fy(zo,y0) > 0. We will choose neighborhood of the
form U = I x J, where I = (zo — a,x¢ + a),J = (yo — b, yo + b).

(i) F =0 is a graph over z

For a,b small we can ensure that F, > ¢ > 0 in U, so that y — F(z,y) is strictly
increasing for y € J and x € [ fixed. Since F(xp,y9) = 0 then F(zo,yo —b) < 0 and
F(z0,y0 + b) > 0. By continuity, and for a small enough, we may assume that

F <0 in the lower edge of U , F > 0 in the upper edge of U .
Hence, for each fixed x € I there exists a unique y = f(z) € J such that
F(z, f(x)) =0.

The argument shows that these are the only solution of ' =0 in U.



(ii) The function y = f(z) is C*

Let z € I and for small h let k = f(z + h) — f(x). The mean value theorem ensures the
existence of 0,60, € (0,1) such that

F(z+h, f(z)) = F(x + h, f(z)) = F(z, f(z)) = Fo(z + 61h, f(2))h,
and on the other hand
F(x+h, f(z)) = F(z+h, f(x)) — F(x + h, f(x + h)) = —F,(z + h, f(z) + O:k)k,

so that

Fy(w+ 7o [(@) + 0aF)
The denominator F, stays away from 0 in U, while the numerator F}, is continuous, therefore,
k — 0 as h — 0. Thus, y = f(x) is continuous, so that for h — 0

F R+ 6 f() Fulz, f(x)

f=— h. (4)

h~ F,(x+h, f(z)+ 0:k) Fy(z, f(z))

This proves that the function f is C' (as well as giving for the derivative the same expression
that yields implicit differentiation).

(iii) The inductive step

We analyze the system (1) with the condition (2), and consider the last equation F,, = 0.
By (2), there exists i € {1,...,n} for which (0;F,)(x¢) # 0. Without loss of generality, we
may assume that this holds for ¢ = n. It follows from the case of one equation that in a
neighborhood U of x¢ the solutions of F,, = 0 correspond to a C! graph

Tn=g(T1, . Ty 1, Tpgly ooy Tin) s (5)

with ¢ defined in a neighborhood of the point Xq given by xq with the n-th component
removed. We insert this back in (1) to obtain a system of n — 1 equations in m — 1 variables:

G1:Fl(l'l,...,$n,1,g,$n+17...,xm) = 0

Gn_l:Fn_l(xl,...,xn_l,g,xn+1,...,xm) = 0

We must show now that

9(Gr,...,Gn1)

6(m1, ce 71771—1)

(%o) # 0.

For 1 <i,k <n —1 we have

8Gk aFk 8Fk ag . 8Fk aFk

or; Oz * ox, Ox;  O; _aiﬁ_xn’
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where

0; F,
oy = N
Written in columns
&-Gn_l @-Fn_l 8nFn_1

Therefore
n—1
det(C’l, ey Cn—l) = det(Al, . 7An—1) - ZO[Z‘ det(Al, . 7Ai—17 An, Ai+17 ce ,An_l) .
i=1

The alternating property of the determinant gives
det(Ab s 7Ai717 An7 Ai+17 cee 7An71) = <_1)n_l_idet<Ala s 7Ai717 Ai+l7 s 7An717 An) )

and using the expression for a; we see that

det(Cy, ..., Coor) = (=1)"(0uFn) ™ D> (=D (O:F,)det(Ar, ..., Ay, Ay, A1, Ay)

i=1

The last sum corresponds to the determinant in (2) as calculated from the n-th row, and
thus, det(C1, ..., C,_1) # 0. The induction hypothesis yields C! functions f; defined in some
neighborhood W of (29 ,,...,2%) such that

il = fl(an, e ,ZEm>
(3)
Tp—1 = fn—l(xn—‘rl) s 7xm)
represents the solutions of the system G; = --- = G,,_; = 0 in a neighborhood V' x W of

%o. This inserted back into (5) completes the proof.



